Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 611(7935): 374-379, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289337

RESUMO

The dynamic turnover of actin filaments (F-actin) controls cellular motility in eukaryotes and is coupled to changes in the F-actin nucleotide state1-3. It remains unclear how F-actin hydrolyses ATP and subsequently undergoes subtle conformational rearrangements that ultimately lead to filament depolymerization by actin-binding proteins. Here we present cryo-electron microscopy structures of F-actin in all nucleotide states, polymerized in the presence of Mg2+ or Ca2+ at approximately 2.2 Å resolution. The structures show that actin polymerization induces the relocation of water molecules in the nucleotide-binding pocket, activating one of them for the nucleophilic attack of ATP. Unexpectedly, the back door for the subsequent release of inorganic phosphate (Pi) is closed in all structures, indicating that Pi release occurs transiently. The small changes in the nucleotide-binding pocket after ATP hydrolysis and Pi release are sensed by a key amino acid, amplified and transmitted to the filament periphery. Furthermore, differences in the positions of water molecules in the nucleotide-binding pocket explain why Ca2+-actin shows slower polymerization rates than Mg2+-actin. Our work elucidates the solvent-driven rearrangements that govern actin filament assembly and aging and lays the foundation for the rational design of drugs and small molecules for imaging and therapeutic applications.


Assuntos
Citoesqueleto de Actina , Actinas , Envelhecimento , Microscopia Crioeletrônica , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/química , Actinas/metabolismo , Actinas/ultraestrutura , Trifosfato de Adenosina/metabolismo , Hidrólise , Nucleotídeos/química , Nucleotídeos/metabolismo , Água/metabolismo , Envelhecimento/metabolismo , Magnésio , Cálcio , Aminoácidos , Fosfatos
2.
Science ; 375(6582): eabn1934, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175800

RESUMO

In skeletal muscle, nebulin stabilizes and regulates the length of thin filaments, but the underlying mechanism remains nebulous. In this work, we used cryo-electron tomography and subtomogram averaging to reveal structures of native nebulin bound to thin filaments within intact sarcomeres. This in situ reconstruction provided high-resolution details of the interaction between nebulin and actin, demonstrating the stabilizing role of nebulin. Myosin bound to the thin filaments exhibited different conformations of the neck domain, highlighting its inherent structural variability in muscle. Unexpectedly, nebulin did not interact with myosin or tropomyosin, but it did interact with a troponin T linker through two potential binding motifs on nebulin, explaining its regulatory role. Our structures support the role of nebulin as a thin filament "molecular ruler" and provide a molecular basis for studying nemaline myopathies.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Miofibrilas/ultraestrutura , Actinas/química , Actinas/metabolismo , Animais , Tomografia com Microscopia Eletrônica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Proteínas Musculares/genética , Mutação , Miocárdio/química , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Miofibrilas/química , Miofibrilas/metabolismo , Miopatias da Nemalina/genética , Miopatias da Nemalina/metabolismo , Miosinas/química , Miosinas/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Músculos Psoas/química , Músculos Psoas/metabolismo , Músculos Psoas/ultraestrutura , Sarcômeros/química , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura
3.
Elife ; 102021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34812732

RESUMO

The molecular motor myosin undergoes a series of major structural transitions during its force-producing motor cycle. The underlying mechanism and its coupling to ATP hydrolysis and actin binding are only partially understood, mostly due to sparse structural data on actin-bound states of myosin. Here, we report 26 high-resolution cryo-EM structures of the actomyosin-V complex in the strong-ADP, rigor, and a previously unseen post-rigor transition state that binds the ATP analog AppNHp. The structures reveal a high flexibility of myosin in each state and provide valuable insights into the structural transitions of myosin-V upon ADP release and binding of AppNHp, as well as the actomyosin interface. In addition, they show how myosin is able to specifically alter the structure of F-actin.


Assuntos
Actomiosina/ultraestrutura , Miosina Tipo V/ultraestrutura , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Galinhas , Humanos , Ligação Proteica , Coelhos
4.
Chemistry ; 27(39): 10048-10057, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33979454

RESUMO

The development of DNA-compatible reaction methodologies is a central theme to advance DNA-encoded screening library technology. Recently, we were able to show that sulfonic acid-functionalized block copolymer micelles facilitated Brønsted acid-promoted reactions such as the Povarov reaction on DNA-coupled starting materials with minimal DNA degradation. Here, the impact of polymer composition on micelle shape, and reaction conversion was investigated. A dozen sulfonic acid-functionalized block copolymers of different molar mass and composition were prepared by RAFT polymerization and were tested in the Povarov reaction, removal of the Boc protective group, and the Biginelli reaction. The results showed trends in the polymer structure-micellar catalytic activity relationship. For instance, micelles composed of block copolymers with shorter acrylate ester chains formed smaller particles and tended to provide faster reaction kinetics. Moreover, fluorescence quenching experiments as well as circular dichroism spectroscopy showed that DNA-oligomer-conjugates, although highly water-soluble, accumulated very effectively in the micellar compartments, which is a prerequisite for carrying out a DNA-encoded reaction in the presence of polymer micelles.


Assuntos
Micelas , Polímeros , Catálise , DNA , Polimerização
5.
Angew Chem Int Ed Engl ; 60(16): 8678-8682, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33449370

RESUMO

Actin is essential for key processes in all eukaryotic cells. Cellpermeable optojasps provide spatiotemporal control of the actin cytoskeleton, confining toxicity and potentially rendering F-actin druggable by photopharmacology. Here, we report cryo electron microscopy (cryo-EM) structures of both isomeric states of one optojasp bound to actin filaments. The high-resolution structures reveal for the first time the pronounced effects of photoswitching a functionalized azobenzene. By characterizing the optojasp binding site and identifying conformational changes within F-actin that depend on the optojasp isomeric state, we refine determinants for the design of functional F-actin photoswitches.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Compostos Azo/química , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Molecular , Processos Fotoquímicos
6.
Nat Commun ; 11(1): 5716, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177513

RESUMO

Single particle cryo-EM requires full automation to allow high-throughput structure determination. Although software packages exist where parts of the cryo-EM pipeline are automated, a complete solution that offers reliable on-the-fly processing, resulting in high-resolution structures, does not exist. Here we present TranSPHIRE: A software package for fully-automated processing of cryo-EM datasets during data acquisition. TranSPHIRE transfers data from the microscope, automatically applies the common pre-processing steps, picks particles, performs 2D clustering, and 3D refinement parallel to image recording. Importantly, TranSPHIRE introduces a machine learning-based feedback loop to re-train its picking model to adapt to any given data set live during processing. This elegant approach enables TranSPHIRE to process data more effectively, producing high-quality particle stacks. TranSPHIRE collects and displays all metrics and microscope settings to allow users to quickly evaluate data during acquisition. TranSPHIRE can run on a single work station and also includes the automated processing of filaments.

7.
Acta Crystallogr D Struct Biol ; 76(Pt 7): 613-620, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32627734

RESUMO

Structure determination of filamentous molecular complexes involves the selection of filaments from cryo-EM micrographs. The automatic selection of helical specimens is particularly difficult, and thus many challenging samples with issues such as contamination or aggregation are still manually picked. Here, two approaches for selecting filamentous complexes are presented: one uses a trained deep neural network to identify the filaments and is integrated in SPHIRE-crYOLO, while the other, called SPHIRE-STRIPER, is based on a classical line-detection approach. The advantage of the crYOLO-based procedure is that it performs accurately on very challenging data sets and selects filaments with high accuracy. Although STRIPER is less precise, the user benefits from less intervention, since in contrast to crYOLO, STRIPER does not require training. The performance of both procedures on Tobacco mosaic virus and filamentous F-actin data sets is described to demonstrate the robustness of each method.


Assuntos
Actinas/química , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Conformação Proteica , Software , Vírus do Mosaico do Tabaco/química , Microscopia Crioeletrônica
8.
Structure ; 28(4): 437-449.e5, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32084355

RESUMO

Actin undergoes structural transitions during polymerization, ATP hydrolysis, and subsequent release of inorganic phosphate. Several actin-binding proteins sense specific states during this transition and can thus target different regions of the actin filament. Here, we show in atomic detail that phalloidin, a mushroom toxin that is routinely used to stabilize and label actin filaments, suspends the structural changes in actin, likely influencing its interaction with actin-binding proteins. Furthermore, high-resolution cryoelectron microscopy structures reveal structural rearrangements in F-actin upon inorganic phosphate release in phalloidin-stabilized filaments. We find that the effect of the sponge toxin jasplakinolide differs from the one of phalloidin, despite their overlapping binding site and similar interactions with the actin filament. Analysis of structural conformations of F-actin suggests that stabilizing agents trap states within the natural conformational space of actin.


Assuntos
Citoesqueleto de Actina/química , Antifúngicos/química , Depsipeptídeos/química , Proteínas Fúngicas/química , Micotoxinas/química , Faloidina/química , Citoesqueleto de Actina/metabolismo , Antifúngicos/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Depsipeptídeos/farmacologia , Proteínas Fúngicas/farmacologia , Micotoxinas/farmacologia , Faloidina/farmacologia , Ligação Proteica
9.
Semin Cell Dev Biol ; 102: 51-64, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31836290

RESUMO

Actin filaments (F-actin) are a key component of eukaryotic cells. Whether serving as a scaffold for myosin or using their polymerization to push onto cellular components, their function is always related to force generation. To control and fine-tune force production, cells have a large array of actin-binding proteins (ABPs) dedicated to control every aspect of actin polymerization, filament localization, and their overall mechanical properties. Although great advances have been made in our biochemical understanding of the remodeling of the actin cytoskeleton, the structural basis of this process is still being deciphered. In this review, we summarize our current understanding of this process. We outline how ABPs control the nucleation and disassembly, and how these processes are affected by the nucleotide state of the filaments. In addition, we highlight recent advances in the understanding of actomyosin force generation, and describe recent advances brought forward by the developments of electron cryomicroscopy.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Animais , Humanos , Modelos Moleculares , Estrutura Molecular
10.
Curr Opin Struct Biol ; 52: 16-24, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30056307

RESUMO

Cytoskeletal proteins play essential roles in many cellular processes. Knowledge of their structures is important to understand their function and regulation. Since cytoskeletal polymers are difficult to crystallize, cryo-EM has been the predominant method of choice to study their structures. Recent advances in the methodology have enabled reconstructions at near-atomic resolution. In this review, we focus on novel insights gained from high-resolution cryo-EM structures of cytoskeletal polymers. These include eukaryotic proteins such as F-actin and microtubules as well as their prokaryotic homologues. The unprecedented high-resolutions allow identifying small molecules, including nucleotides and drugs, as well as subtle changes at interfaces that are key to complex processes, such as nucleotide hydrolysis in microtubules and actin filaments. While major methodological advances have already promoted the structural analysis of cytoskeletal polymers, there are still specific methodological challenges to overcome and many scientific questions remain to be answered.


Assuntos
Microscopia Crioeletrônica , Proteínas do Citoesqueleto , Modelos Moleculares , Actinas/química , Actinas/metabolismo , Movimento Celular , Microscopia Crioeletrônica/métodos , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/química , Desenho de Fármacos , Células Eucarióticas , Células Procarióticas , Conformação Proteica , Isoformas de Proteínas/química , Especificidade da Espécie , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
11.
Nat Struct Mol Biol ; 25(6): 528-537, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29867215

RESUMO

The function of actin is coupled to the nucleotide bound to its active site. ATP hydrolysis is activated during polymerization; a delay between hydrolysis and inorganic phosphate (Pi) release results in a gradient of ATP, ADP-Pi and ADP along actin filaments (F-actin). Actin-binding proteins can recognize F-actin's nucleotide state, using it as a local 'age' tag. The underlying mechanism is complex and poorly understood. Here we report six high-resolution cryo-EM structures of F-actin from rabbit skeletal muscle in different nucleotide states. The structures reveal that actin polymerization repositions the proposed catalytic base, His161, closer to the γ-phosphate. Nucleotide hydrolysis and Pi release modulate the conformational ensemble at the periphery of the filament, thus resulting in open and closed states, which can be sensed by coronin-1B. The drug-like toxin jasplakinolide locks F-actin in an open state. Our results demonstrate in detail how ATP hydrolysis links to F-actin's conformational dynamics and protein interaction.


Assuntos
Actinas/química , Trifosfato de Adenosina/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Actinas/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Microscopia Crioeletrônica , Depsipeptídeos/metabolismo , Hidrólise , Proteínas dos Microfilamentos/metabolismo , Músculo Esquelético/metabolismo , Fosfatos/metabolismo , Ligação Proteica , Conformação Proteica , Coelhos
12.
Science ; 358(6359): 45-46, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28983039
13.
Proc Natl Acad Sci U S A ; 114(40): 10636-10641, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923924

RESUMO

During their life cycle, apicomplexan parasites, such as the malaria parasite Plasmodium falciparum, use actomyosin-driven gliding motility to move and invade host cells. For this process, actin filament length and stability are temporally and spatially controlled. In contrast to canonical actin, P. falciparum actin 1 (PfAct1) does not readily polymerize into long, stable filaments. The structural basis of filament instability, which plays a pivotal role in host cell invasion, and thus infectivity, is poorly understood, largely because high-resolution structures of PfAct1 filaments were missing. Here, we report the near-atomic structure of jasplakinolide (JAS)-stabilized PfAct1 filaments determined by electron cryomicroscopy. The general filament architecture is similar to that of mammalian F-actin. The high resolution of the structure allowed us to identify small but important differences at inter- and intrastrand contact sites, explaining the inherent instability of apicomplexan actin filaments. JAS binds at regular intervals inside the filament to three adjacent actin subunits, reinforcing filament stability by hydrophobic interactions. Our study reveals the high-resolution structure of a small molecule bound to F-actin, highlighting the potential of electron cryomicroscopy for structure-based drug design. Furthermore, our work serves as a strong foundation for understanding the structural design and evolution of actin filaments and their function in motility and host cell invasion of apicomplexan parasites.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Depsipeptídeos/química , Modelos Moleculares , Plasmodium falciparum/química , Proteínas de Protozoários/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Microscopia Crioeletrônica , Plasmodium falciparum/metabolismo , Plasmodium falciparum/ultraestrutura , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...